EJERCICIOS RESUELTOS NÚMEROS REALES

Ejercicio nº 1.- Considera los siguientes números:

$$\frac{3}{2}, \quad \frac{2}{3}, \quad 1,5, \quad \sqrt[3]{8}, \quad \sqrt{2}, \quad \sqrt[3]{2}, \quad 2,131333333...$$

Clasificalos según sean naturales, enteros, racionales o reales.

Solución:
- Naturales: $\sqrt[3]{8}$
- Enteros: $\frac{2}{3}, \frac{3}{2}, 1,5, \sqrt[3]{8}$
- Racionales: $-\frac{3}{2}, \frac{2}{3}, 1,5; \frac{3}{2}$
- Reales: Todos

Ejercicio nº 2.- Escribe en forma de potencia de exponente fraccionario y simplifica:

a) $\sqrt[3]{x^2} \cdot \sqrt[3]{x^3}$

b) $\frac{\sqrt[3]{a^2}}{\sqrt{a}}$

Solución:
- a) $\sqrt[3]{x^2} \cdot \sqrt[3]{x^3} = x^{\frac{2}{3}} \cdot x^{\frac{3}{3}} = x^{\frac{5}{3}} = \sqrt[3]{x^5} = x^{\frac{5}{3}}$
- b) $\frac{\sqrt[3]{a^2}}{\sqrt{a}} = a^{\frac{2}{3}} \cdot a^{-\frac{1}{2}} = a^{\frac{2}{3} - \frac{1}{2}} = a^{\frac{1}{6}}$

Ejercicio nº 3.- Halla el valor de x, utilizando la definición de logaritmo:

a) $\log_4 16 = 4$

b) $\log_3 x = 4$

Solución:
- a) $\log_4 16 = 4 \rightarrow 4^4 = 16 \rightarrow x = 2$
- b) $\log_3 x = 4 \rightarrow 3^4 = x \rightarrow x = 81$

Ejercicio nº 4.- Simplifica al máximo las siguientes expresiones:

a) $\sqrt{18} \cdot \sqrt[3]{\frac{45}{10}}$

b) $\sqrt[3]{98 - 2 \sqrt{18}}$

c) $\frac{\sqrt[3]{6} + 3 \sqrt[3]{3}}{4 \sqrt[3]{3}}$

Solución:
- a) $\sqrt{18} \cdot \sqrt[3]{\frac{45}{10}} = \sqrt{18 \cdot 45} \cdot \sqrt[3]{\frac{10}{2 \cdot 5}} = \sqrt{3^2 \cdot 2 \cdot 3^3 \cdot 5} = \sqrt{3^4} \cdot \sqrt{2} = 3^2 \sqrt{2} = 9$
- b) $\sqrt{98 - 2 \sqrt{18}} = \sqrt{2 \cdot 7^2 - 2 \sqrt{2} \cdot 3^2} = \sqrt{2} \cdot 7 - \sqrt{2} \cdot 3 = \sqrt{2}$
- c) $\frac{\sqrt[3]{6} + 3 \sqrt[3]{3}}{4 \sqrt[3]{3}} = \frac{\sqrt[3]{6} + 3 \sqrt[3]{3}}{4 \cdot 3} = \sqrt[3]{\frac{6 + 3 \sqrt[3]{3} \cdot 3}{12}} = \frac{3 \sqrt[3]{2} + 9}{12} = \frac{3 \sqrt[3]{2} + 9}{12} = \frac{\sqrt[3]{2} + 3}{4}$
Ejercicio nº 5. Halla, utilizando la calculadora, el valor de:

a) $\sqrt[3]{16384}$
b) $\frac{5,25 \cdot 10^3 + 2,32 \cdot 10^8}{2,5 \cdot 10^{-12}}$
c) $\log_{10} 58$

Solución:

a) 16384

Por tanto: $\sqrt[3]{16384} = 4$

b) 5.25 EXP 9 + 2.32 EXP 8 / 2.5 EXP - 12 = 2,1928

Por tanto: $\frac{5,25 \cdot 10^8 + 2,32 \cdot 10^8}{2,5 \cdot 10^{-12}} = 2,19 \cdot 10^{21}$

c) $\log_{10} 58$ / $\log_{10} 3 = 3.695974506$

Por tanto: $\log_{10} 58 = 3,695974506$

Ejercicio nº 7. Clasifica los siguientes números según sean naturales, enteros, racionales o reales:

$5,7$
$-2,35$
$\frac{3}{8}$
-4
$\frac{14}{7}$
$\frac{1}{\sqrt{3}}$
$\sqrt{8}$

Solución:

- Naturales: $\frac{14}{7}$
- Enteros: -4; $\frac{14}{7}$
- Racionales: $5,7$; $-2,35$; $\frac{3}{8}$; -4; $\frac{14}{7}$
- Reales: Todos

Ejercicio nº 8. Efectúa las siguientes operaciones, expresando previamente los radicales en forma de potencia de exponente fraccionario:

a) $\sqrt[3]{x^2} \cdot \sqrt[3]{x^2}$
b) $\frac{\sqrt[4]{5}^3}{\sqrt{5}}$

Solución:

a) $\sqrt[3]{x^2} \cdot \sqrt[3]{x^2} = x^{2/3} \cdot x^{2/3} = x^{4/3} = (x^{4/3})^{1/3}$

b) $\frac{\sqrt[4]{5}^3}{\sqrt{5}} = \frac{5^{3/4}}{5^{1/2}} = 5^{3/4 - 1/2} = 5^{1/4}$

Ejercicio nº 9. Calcula, utilizando la definición de logaritmo: $\log_2 \frac{1}{8} + \log_3 \sqrt{27} - \log_4 1$

Solución:

$\log_2 \frac{1}{8} + \log_3 \sqrt{27} - \log_4 1 = \log_2 2^{-3} + \log_3 3^{3/2} - \log_4 1 = -3 + \frac{3}{2} - 0 = -\frac{3}{2}$
Ejercicio nº 10.- Calcula y simplifica:

a) $\sqrt{\frac{5}{7}} \sqrt{\frac{343}{125}}$

b) $\sqrt{45} - 3\sqrt{125}$

c) $\frac{3 + \sqrt{2}}{3 - \sqrt{2}}$

Solución:

a) $\sqrt{\frac{5}{7}} \sqrt{\frac{343}{125}} = \sqrt{\frac{5 \cdot 343}{7 \cdot 125}} = \sqrt{\frac{5 \cdot 7^2}{7^2 \cdot 5^2}} = \frac{7}{5}$

b) $\sqrt{45} - 3\sqrt{125} = \sqrt{3^2 \cdot 5} - 3\sqrt{5^3} = 3\sqrt{5} - 15\sqrt{5} = -12\sqrt{5}$

c) $\frac{3 + \sqrt{2}}{3 - \sqrt{2}} = \frac{(3 + \sqrt{2})(3 + \sqrt{2})}{(3 - \sqrt{2})(3 + \sqrt{2})} = \frac{9 + 6\sqrt{2} - 9}{7} = \frac{6\sqrt{2}}{7}$

Ejercicio nº 11.- Halla con la calculadora:

a) $\sqrt{2} 197$

b) $(4,31 \cdot 10^8) : (3,25 \cdot 10^{-4}) + 7 \cdot 10^{11}$

c) $\log_{10} 128$

Solución:

a) 2.197 SHIFT [x^y] 3 = 13 Por tanto: $\sqrt{2} 197 = 13$

b) 4,31 EXP 8 / 3,25 EXP -4 + 7 EXP 11 = 2.02615384612

Por tanto: $4,31 \cdot 10^8 : 3,25 \cdot 10^{-4} + 7 \cdot 10^{11} = 2,026153846 \cdot 10^{12}$

c) $\log_{10} 128 / \log_{10} 7 = 2.49345031$

Por tanto: $\log_{10} 128 = 2,49345031$

Ejercicio nº 12.- Utilizando la definición de logaritmo, calcula: $\log_{32} 3 + \log_{3} \sqrt{81} - \log_{5} \frac{1}{25}$

Solución:

$log_{32} 3 + \log_{3} \sqrt{81} - \log_{5} \frac{1}{25} = \log_{32} 2^5 + \log_{3} 3^{4/3} - \log_{5} 5^{-2} = 5 + \frac{4}{3} - 2 = \frac{5}{3}$

Ejercicio nº 13.- Calcula y simplifica al máximo las siguientes expresiones:

a) $\sqrt{\frac{84}{45}} \sqrt{\frac{21}{15}}$

b) $\sqrt{80} - 3\sqrt{45}$

c) $\frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} - \sqrt{5}}$

Solución:

a) $\sqrt{\frac{84}{45}} \sqrt{\frac{21}{15}} = \sqrt{\frac{2 \cdot 3 \cdot 7 \cdot 3 \cdot 7}{3^2 \cdot 5 \cdot 3 \cdot 5}} = \frac{2^2 \cdot 7^2}{3 \cdot 5^2} = \frac{2^2 \cdot 7}{3 \cdot 5} = \frac{2 \cdot 7}{3 \cdot 5} = \frac{14}{3} \cdot \frac{1}{5} = \frac{14}{15}$

b) $\sqrt{80} - 3\sqrt{45} = \sqrt{2^4 \cdot 5} - 3\sqrt{3^2 \cdot 5} = 4\sqrt{5} - 9\sqrt{5} = -5\sqrt{5}$

c) $\frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} - \sqrt{5}} = \frac{(\sqrt{6} + \sqrt{5})(\sqrt{6} + \sqrt{5})}{(\sqrt{6} - \sqrt{5})(\sqrt{6} + \sqrt{5})} = \frac{6 + 2\sqrt{30} + 5}{6 - 5} = \frac{11 + 2\sqrt{30}}{1} = 11 + 2\sqrt{30}$
Ejercicio nº 14.- Teniendo en cuenta la definición de logaritmo, calcula: \[\log_3 \frac{1}{81} + \log_2 \sqrt{8} - \log_2 2 \]

Solución:

\[\log_3 \frac{1}{81} + \log_2 \sqrt{8} - \log_2 2 = \log_3 3^{-4} + \log_2 2^{3/2} - \log_2 2 = -4 + \frac{3}{2} - 1 = -\frac{7}{2} \]

Ejercicio nº 15.- Efectúa y simplifica:

a) \[\sqrt{\frac{2}{27}} \sqrt{\frac{3}{2}} \]
b) \[\sqrt{48} - 2 \sqrt{12} \]
c) \[\frac{2 + \sqrt{2}}{3 + \sqrt{2}} \]

Solución:

a) \[\sqrt{\frac{2}{27}} \sqrt{\frac{3}{2}} = \sqrt{\frac{2 \cdot 3}{27 \cdot 2}} = \sqrt{\frac{1}{3^2}} = \frac{1}{3} \]

b) \[\sqrt{48} - 2 \sqrt{12} = \sqrt{2^4 \cdot 3} - 2 \sqrt{2^2 \cdot 3} = 4 \sqrt{3} - 4 \sqrt{3} = 0 \]

c) \[\frac{2 + \sqrt{2}}{3 + \sqrt{2}} = \frac{(2 + \sqrt{2})(3 - \sqrt{2})}{3 + \sqrt{2}} = \frac{6 - 2 \sqrt{2} + 3 \sqrt{2} - 2}{9 - 2} = \frac{4 + \sqrt{2}}{7} \]

Ejercicio nº 16.- Calcula el valor de \(x \) en cada caso, utilizando la definición de logaritmo:

a) \(\log_2 64 = x \)
b) \(\log_2 64 = 3 \)

Solución:

a) \(\log_2 64 = x \) \(\rightarrow \) \(2^x = 64 \) \(\rightarrow \) \(x = 6 \)

b) \(\log_2 64 = 3 \) \(\rightarrow \) \(x^3 = 64 \) \(\rightarrow \) \(x = 4 \)

Ejercicio nº 17.- Halla y simplifica al máximo:

a) \[\sqrt{\frac{30}{45}} \sqrt{\frac{12}{10}} \]

b) \[\sqrt{147} - 2 \sqrt{243} \]

c) \[\frac{\sqrt{2}}{2 \sqrt{2} + 1} \]

Solución:

a) \[\sqrt{\frac{30}{45}} \sqrt{\frac{12}{10}} = \sqrt{\frac{30 \cdot 12}{45 \cdot 10}} = \sqrt{\frac{2 \cdot 3 \cdot 5 \cdot 2^2 \cdot 3}{3^2 \cdot 5 \cdot 2 \cdot 5}} = \sqrt{\frac{2^2}{5}} = \frac{2}{\sqrt{5}} = \frac{2 \sqrt{5}}{5} \]

b) \[\sqrt{147} - 2 \sqrt{243} = \sqrt{3 \cdot 7^2} - 2 \sqrt{3^3} = 7 \sqrt{3} - 18 \sqrt{3} = -11 \sqrt{3} \]

c) \[\frac{\sqrt{2}}{2 \sqrt{2} + 1} = \frac{\sqrt{2}(2 \sqrt{2} - 1)}{(2 \sqrt{2} + 1)(2 \sqrt{2} - 1)} = \frac{4 - \sqrt{2}}{4 - 2} = \frac{4 - \sqrt{2}}{2} = \frac{4 - \sqrt{2}}{7} \]